2022
DOI: 10.48550/arxiv.2210.09126
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Verifiable and Provably Secure Machine Unlearning

Abstract: Machine unlearning aims to remove points from the training dataset of a machine learning model after training; for example when a user requests their data to be deleted. While many machine unlearning methods have been proposed, none of them enable users to audit the unlearning procedure and verify that their data was indeed unlearned. To address this, we define the first cryptographic framework to formally capture the security of verifiable machine unlearning. While our framework is generally applicable to dif… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 40 publications
0
0
0
Order By: Relevance