Globally, building energy consumption has been rising, emphasizing the need to reduce energy usage in the building sector to lower national energy consumption and carbon dioxide emissions. This study analyzes the applicability of photovoltaic (PV) systems in enhancing the energy self-sufficiency of small-scale, low-rise apartment buildings. The analysis is based on a case study using Republic of Korea’s Zero-Energy Building Certification System. By employing the ECO2 simulation program, this research investigates the impact of PV system capacity and efficiency on the energy self-sufficiency rate (ESSR). A series of parametric analyses were carried out for various combinations of building-attached photovoltaic (BAPV) roofs and building-integrated photovoltaic (BIPV) facades, considering the initial cost of BIPV facades. The simulations demonstrate that achieving the target ESSR requires a combination of BAPV roofs and BIPV facades, due to limited roof areas for PV systems. Additionally, this study reveals that BIPV facades can be cost-effective when their unit price, relative to BAPV roofs, is below 62%. Based on the ECO2 simulations, a linear regression formula is proposed to predict the ESSR for the case study building. Verification analysis shows that the proposed formula predicts an ESSR of 74.1%, closely aligned with the official ESSR of 76.9% certified by the Korean government. Although this study focuses on the case of a specific apartment building and lacks actual field data, it provides valuable insights for future applications of PV systems to enhance energy self-sufficiency in small-scale, low-rise apartment buildings in Republic of Korea.