The triangular mesh-based gyrokinetic scheme enables comprehensive axis-to-edge studies across the entire plasma volume. Our approach employs triangular finite elements with first-derivative continuity (C1), building on previous work to facilitate gyrokinetic simulations. Additionally, we have adopted the mixed variable/pullback scheme for gyrokinetic electromagnetic particle simulations. The filter-free treatment in the poloidal cross-section with triangular meshes introduces unique features and challenges compared to previous treatments using structured meshes. Our implementation has been validated through benchmarks using ITPA-TAE (Toroidicity-induced Alfv'en Eigenmode) parameters, showing its capability in moderate to small electron skin depth regimes. Additional examinations with experimental parameters confirm its applicability to realistic plasma conditions.