2024
DOI: 10.1017/nlp.2024.54
|View full text |Cite
|
Sign up to set email alerts
|

Verifying the robustness of automatic credibility assessment

Piotr Przybyła,
Alexander Shvets,
Horacio Saggion

Abstract: Text classification methods have been widely investigated as a way to detect content of low credibility: fake news, social media bots, propaganda, etc. Quite accurate models (likely based on deep neural networks) help in moderating public electronic platforms and often cause content creators to face rejection of their submissions or removal of already published texts. Having the incentive to evade further detection, content creators try to come up with a slightly modified version of the text (known as an attac… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 65 publications
0
0
0
Order By: Relevance