Reinforcement corrosion is a phenomenon that affects not only the durability and serviceability of the structure itself but the economy of the countries, as well. In many cases, structures and bridges must be repaired or reconstructed as a result of corrosion of the reinforcement. In extreme cases, when maintenance is neglected, it is necessary to completely replace the structures with new ones, even if their planned service lifetime has not been reached ‐ it is not enough to strengthen them or it is economically inefficient. Corrosion of the reinforcement primarily causes a reduction in the cross‐sectional resistance of the load‐bearing elements by reducing the cross‐sectional area of the reinforcement, which means a reduction in the force in the reinforcement that it transmits. For this reason, it is necessary to know the rate of corrosion over time depending on the environment in which the element is located. The paper is focused on the experimental measurements of corrosion losses due to atmospheric corrosion on reinforcement samples using the field test. As a part of experimental measurements, corrosion rates on reinforcements of four diameters (diameters 6, 10, 14, and 25 mm) of steel for reinforcement, grade B 500B, are monitored at measuring stations and bridges in various aggressive environments.