Let k be a field and let Λ be an indecomposable finite dimensional k-algebra such that there is a stable equivalence of Morita type between Λ and a self-injective split basic Nakayama algebra over k. We show that every indecomposable finitely generated Λ-module V has a universal deformation ring R(Λ, V ) and we describe R(Λ, V ) explicitly as a quotient ring of a power series ring over k in finitely many variables. This result applies in particular to Brauer tree algebras, and hence to p-modular blocks of finite groups with cyclic defect groups.2000 Mathematics Subject Classification. Primary 16G10; Secondary 16G20, 20C20.