Tissue culture platforms have been around for several decades and have enabled numerous key findings in the cardiovascular field. However, these platforms fail to recreate the mechanical and dynamic features found within the body. Organs-on-chips (OOCs) are cellularized microfluidic based devices that can mimic the basic structure, function, and responses of organs. These systems have been successfully utilized in disease, development, and drug studies. OOCs are designed to recapitulate the mechanical, electrical, chemical, and structural features of the in vivo microenvironment. Here, we review cardiovascular-themed OOC studies, design considerations, and techniques used to generate microtissues within these devices. Further, we will highlight the advantages of OOCs over traditional cell culture methods, discuss implementation challenges, and provide perspectives on the state of the field.