A series of alkyl aluminium complexes based on heteroscorpionate ligands were designed as catalysts for the ring-opening polymerisation of cyclic esters and ring-opening copolymerisation of epoxides and anhydrides. Treatment of AlX3 (X = Me, Et) with ligands bpzbeH [bpzbe = 1,1-bis(3,5-dimethylpyrazol-1-yl)-3,3-dimethyl-2-butoxide], bpzteH [bpzte = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-para-tolylethoxide], and (R,R)-bpzmmH [(R,R)-bpzmm = (1R)-1-{(1R)-6,6-dimethyl-bicyclo[3.1.1]-2-hepten-2-yl}-2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide] for 2 hours at 0 °C afforded the mononuclear dialkyl aluminium complexes [AlMe2{κ2-bpzbe}] (1), [AlEt2{κ2-bpzbe}] (2), [AlMe2{κ2-(R,R)-bpzmm}] (3) and [AlEt2{κ2-(R,R)-bpzmm}] (4), and the dinuclear dialkyl complexes [AlMe2{κ2-bpzte}]2 (5) and [AlEt2{κ2-bpzte}]2 (6). The molecular structures of the new complexes were determined by spectroscopic methods and confirmed by X-ray crystallography. The alkyl-containing aluminium complexes can act as highly efficient single-component initiators for the ring-opening polymerisation of ε-caprolactone and l-lactide and for the ring-opening copolymerisation of cyclohexene oxide and phthalic anhydride to give a range of biodegradable polyesters.