Abstract-We show the strength of the Fourier modal method (FMM) for numerically investigating the optical properties of vertical cavities including subwavelength gratings. Three different techniques for determining the resonance frequency and Q-factor of a cavity mode are compared. Based on that, the Fabry-Perot approach has been chosen due to its numerical efficiency. The computational uncertainty in determining the resonance frequency and Q-factor is investigated, showing that the uncertainty in the Q-factor calculation can be a few orders of magnitude larger than that in the resonance frequency calculation. Moreover, a method for reducing 3D simulations to lower-dimensional simulations is suggested, and is shown to enable approximate and fast simulations of certain device parameters. Numerical calculation of the cavity dispersion, which is an important characteristic of vertical cavities, is illustrated. By employing the implemented FMM, it is shown that adiabatic heterostructures designs are advantageous compared to abrupt heterostructures for minimizing the cavity scattering loss.