Vertical greening systems (VGSs) represent an emerging technology within the field of building-integrated horticulture that have been used to help counteract the global issues of urbanisation and climate change. Research and development within the field of building-integrated horticulture, despite being in the infancy stage, is steadily progressing, highlighting a broad range of achievable social, environmental, and economic benefits this sustainable development technology could provide. However, as VGS technology is relatively new, an array of different designs and technologies have been categorized collectively as VGSs, each having various performances towards the proposed and desired benefits. The purpose of this paper is to review existing VGS technologies and analyse the impact of implementation on sustainable development, and subsequently to propose a new VGS design that theoretically achieves the best possible outcomes when aiming to obtain the maximum benefits of installing a VGS. The resultant design creates new opportunities for VGS environmental amenities and maintenance, increases the scope of applications, and improves the environmental performance of the host building. The proposed design has the potential to transform VGSs beyond conventional functions of aesthetic greening to create novel ecosystems, which enhances the formation of habitats for a more diverse range of flora and fauna.