The dislocation of a seismic event under the so-called Offset Continuation Operation (OCO) can be described by a second-order partial differential equation, which has been called the OCO image-wave equation. By substitution of a ray-like trial solution, an OCO image-wave eikonal equation is obtained that describes the kinematic aspects of OCO imagewave propagation. In this work, we solve the OCO image-wave eikonal equation by means of the method of characteristics. The characteristics of this equation are the OCO trajectories that describe the path of dislocation of a seismic event under variation of the source-receiver offset. The set of endpoints of several OCO trajectories traced from the same initial to the same final offset under varying values for the medium velocity defines the OCO velocity ray or briefly OCO ray. This OCO ray can be employed for velocity analysis. The algorithm consists of OCO ray tracing an then finding the intersection point of the OCO ray with the seismic reflection event in the final common-offset section. The procedure has the advantage over conventional velocity analysis that it is based on a comparison of simulated and acquired data rather than two sets of simulated data. Numerical examples demonstrate that the OCO ray tracing can be accurately executed and that the resulting velocity analysis yields reliable velocities. Moreover, based on the analytic expressions for the OCO rays starting from zerooffset (migraton to common offset, MCO), we derived an image-wave equation for MCO velocity continuation. We demonstrate that in many practical situations this equation can be directly employed for OCO, thus avoiding the need to trace OCO trajectories and OCO rays.