Abstract:The physiological principles predicting growth (3-PG) model is generally used to estimate gross primary productivity (GPP) in forest plantations. All existing parameter values in the 3-PG model for GPP estimation have been set as the standard values for eucalyptus and pine plantations. We propose that the 3-PG model can be applied to deciduous broadleaf forests dominated by Betula platyphylla via appropriate parameterization of their structure and functions. The allometric relationships between stem biomass and stem diameter, and between foliage biomass and stem biomass, were determined for the biomass partitioning ratio. Additionally, a temperature modifier was considered appropriate because it affected canopy quantum efficiency. After parameterization, the model showed a good correlation between the estimated results and the data from experimental plots in central and northern Japan. At both sites, GPP peaked around August and was 0 during the winter, when the canopy is bare of leaves. Furthermore, a sensitivity analysis was conducted to determine the most influential parameter relative to the output. GPP was sensitive to changes in canopy quantum efficiency and optimum temperature. Among the meteorological data used, solar radiation and temperature had great impacts on GPP, therefore, these parameters should be carefully considered to produce accurate results.
OPEN ACCESSForests 2011, 2 591