Automated stone manufacturing has undergone considerable development in recent years. Thanks to international research dealing with the cutting, sawing and grinding of different natural stones, processing time shortens and tool-life lengthens. However, the process of stone milling has not been extensively examined yet, primarily because of the novelty of this technology. The aim of the research described in this article is to examine how variable cutting speed affects the quality of workpiece edges while milling granite materials. For the research, sample surfaces were formed on five granite slabs with different average grain sizes using five cutting speed values. Afterwards, changes in the average surface roughness and average edge chipping rate were examined. From the research results, it can be concluded that, due to an increase in cutting speed, the average edge chipping rate will decrease until reaching a borderline speed. In the case of a higher cutting speed, the referent tendency cannot be ascertained. A statistical analysis conducted in the scope of this research showed that if a variable cutting speed is applied, then changes in the quality of the sample surface edge can be inferred from the development trends of average surface roughness.