2000
DOI: 10.1109/59.852131
|View full text |Cite
|
Sign up to set email alerts
|

Very short-term load forecasting using artificial neural networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
99
0
6

Year Published

2001
2001
2019
2019

Publication Types

Select...
7
2
1

Relationship

0
10

Authors

Journals

citations
Cited by 253 publications
(106 citation statements)
references
References 12 publications
1
99
0
6
Order By: Relevance
“…Yapay sinir ağları (YSA) en güçlü tahmin yöntemlerinden birisidir ve birçok alanda kullanılmaktadır [11]- [18]. YSA ile tahmin işlemi yapılmadan önce YSA'nın eğitilmesi gereklidir.…”
Section: Introductionunclassified
“…Yapay sinir ağları (YSA) en güçlü tahmin yöntemlerinden birisidir ve birçok alanda kullanılmaktadır [11]- [18]. YSA ile tahmin işlemi yapılmadan önce YSA'nın eğitilmesi gereklidir.…”
Section: Introductionunclassified
“…In contrast, the literature on specific forecasting systems, which concentrates on the solutions to specific forecasting problems, is extensive. Many of these systems have been developed for electric load forecasting (Kim et al, 1995;Khotanzad et al, 1997;Vermaak and Botha, 1998;Charytoniuk and Chen, 2000;Vilcahuamán et al, 2004). The rest are mainly for weather forecasting (Nelson and Winter, 1964;Kallos et al, 1997;Stern, 2002), stock price forecasting (Baba and Kozaki, 1992;Hiemstra, 1994), sales forecasting (Kuo, 2001;Thomassey and Fiordaliso, 2006) and flood forecasting (Kouwen, 2000;Li et al, 2006).…”
Section: Forecasting Systemsmentioning
confidence: 99%
“…Although the paper has been frequently cited, its autoregressive models were incorrectly applied to the load series. Charytoniuk and Chen proposed another approach using a set of ANNs to model the load dynamics instead of the actual loads [8]. For VSTLF, Taylor used the observations of minute-by-minute British electricity demand to evaluate various methods including autoregressive integrated moving average (ARIMA) models and two exponential smoothing methods [9].…”
Section: Introductionmentioning
confidence: 99%