The surface assessment via grid evaluation
(SuAVE)
software was developed to account for the effect of curvature in the
calculations of structural properties of chemical interfaces regardless
of the chemical composition, asymmetry, and level of atom coarseness.
It employs differential geometry techniques, enabling the representation
of chemical surfaces as fully differentiable. In this article, we
present novel developments of SuAVE to treat closed surfaces and complex
cavity shapes. These developments expand the repertoire of curvature-dependent
analyses already available in the previous version of SuAVE (e.g., area per lipid, density profiles, membrane thickness,
deuterium-order parameters, volume per lipid, and surface curvature
angle) to include new functionalities applicable to soft matter (e.g., sphericity, average radius, principal moment of inertia,
and roundness) and crystalline porous materials (e.g., pore diameter, internal void volume, total area, and the total
void volume of the unit cell structure). SuAVE can accurately handle
chemical systems with high and low atom density as demonstrated for
two distinct chemical systems: the lipid A vesicle and a set of selected
metal–organic frameworks. The SuAVE software v2.0 is fully
parallel and benefits from a compiler that supports OpenMP. SuAVE
is freely available from and .