Secretory granules (SGs) of mast cells are lysosome-related organelles that contain various inflammatory molecules such as histamine, which are stored in the cytoplasm. Mast cell degranulation is the regulated exocytosis of SGs in response to external stimuli, such as the antigen-mediated cross-linking of the high-affinity IgE receptor, FcεRI. Upon stimulation, SGs undergo priming to become fusion-competent prior to fusing with the plasma membrane, which is mediated by Munc13-4, one of the five members of the vesicle-priming Munc13 protein family. Although Munc13-4 is shown to be crucial for mast cell degranulation, the functional involvement of other Munc13 isoform(s) remains unknown. Herein, this was investigated using the RBL-2H3 mast cell line. We found that Munc13-1 and Munc13-4 are the only Munc13 isoforms that are expressed in the RBL-2H3 cells, and Munc13-1 is distributed in the cytoplasm, but highly concentrated on the late endosome and/or lysosome. Unexpectedly, antigen-induced degranulation was considerably increased by Munc13-1 knockdown, but decreased by its overexpression. Further, we found that the hypersecretion phenotype of the Munc13-1-knockdown cells was attenuated by simultaneous Munc13-4 knockdown. These results suggested that Munc13-1 has an inhibitory role in antigen-induced mast cell degranulation, which is performed in a Munc13-4-dependent manner.Mast cells are specialized secretory cells that play a central role in type I allergic reactions, as well as in certain innate and adaptive immune responses (1, 13). The antigen-mediated cross-linking of the highaffinity immunoglobulin E (IgE) receptor FcεRI triggers Ca 2+