Mesenchymal stem cells (MSCs) have been shown to have therapeutic efficacy in different complex pathologies in feline species. This effect is attributed to the secretion of a wide variety of bioactive molecules and extracellular vesicles, such as exosomes, with significant paracrine activity, encompassed under the concept of the secretome. However, at present, the exosomes from feline MSCs have not yet been studied in detail. The objective of this study is to analyze and compare the protein profiles of the secretome as a whole and its exosomal fraction from feline adipose-derived MSCs (fAd-MSCs). For this, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein–Protein Interaction Networks Functional Enrichment Analysis (STRING) were utilized. A total of 239 proteins were identified in the secretome, and 228 proteins specific to exosomes were identified, with a total of 133 common proteins. The proteins identified in the secretome were located in the extracellular regions and in the cytoplasm, while the exosomal proteins were located mainly in the membrane, cytoplasm and cytosol. Regarding function, in the secretome, proteins involved in different metabolic pathways, in pathways related to the immune system and the endocrine system and in the processing of proteins in the endoplasmic reticulum predominated. In contrast, proteins specific to exosomes were predominantly associated with endocytosis, cell junctions, platelet activation and other cell signaling pathways. The possible future use of the secretome, or some of its components, such as exosomes, would provide a non-cell-based therapeutic strategy for the treatment of different diseases that would avoid the drawbacks of cell therapy.