While biogas production offers promising solutions for waste management, energy diversification, and sustainable development, effective project implementation requires comprehensive evaluation criteria that encompass diverse aspects, such as the problem to be addressed, biodigester technology selection, business model development, investment considerations, and final product utilization. A preliminary study involving an integrative review of 58 articles yielded 499 unique criteria. These criteria were categorized into four groups: economic, environmental, social, and technical, encompassing a total of 39 subcriteria. Six stages of the biogas production cycle were considered in the analysis: project, initiation, biodigester type selection, location determination, operational cycle definition, and final product utilization. The analysis revealed that existing decision-making models often prioritize technical and economic considerations while neglecting broader social and environmental perspectives. This paper addresses this gap by proposing, for the first time, stage-specific, multicriteria decision-making (MDCA) models tailored to each phase of a biogas production cycle. These models empower project managers and policymakers to optimize resource allocation, minimize the environmental impact, maximize social benefits, and ensure project viability and profitability. The models’ adaptability allows for tailored prioritization based on specific project requirements and contexts. This groundbreaking research fills a critical void in biogas decision making by bridging the gap between existing technical and economic model limitations and the growing need for truly sustainable project development.