Biomonitoring studies are most often used in short-term study periods to quickly obtain information on the state/quality of the environment and its pollution levels. Performing long-term surveys involves a prolonged wait for the result and is therefore not often used and is rather associated with classical air quality monitoring. The aim of this study was to evaluate atmospheric air pollution by selecting 16 elements and 16 polycyclic aromatic hydrocarbons conducted as part of a 12-month ‘moss-bag’ technique of an active biomonitoring method with the use of three moss species: Pleurozium schreberi, Sphagnum fallax, and Dicranum polysetum. All analytes were determined by inductively coupled plasma mass spectrometry (ICP-MS) and gas chromatography–mass spectrometry (GC-MS). As a result of the experiment, it was found that the concentrations of all elements increased with time of exposure. The total sum of them in D. polysetum moss was 30% and 60% more than in P. schreberi and S. fallax, respectively, which allows us to consider this species’ broader use in active biomonitoring. For PAHs analysis, the best biomonitor in time was P. schreberi, which accumulated 25% and 55% more than S. fallax and D. polysetum, respectively. In this one-year study, most organic compounds accumulated between 5 and 6 months of exposure, depending on the species. Given the low-cost nature of active biomonitoring, it should be concluded that mosses could be used in long-term monitoring of the quality of the atmospheric aerosol in terms of element and organic compound concentration in air.