A therapeutic strategy to improve wound healing has become an increasingly important medical task due to the rising incidence of adiposity and type II diabetes as well as the proceeding population aging. In order to cope with the resulting burdens, new strategies to achieve rapid and complete wound healing must now be developed. Accordingly, the development of a bioactive wound dressing in the form of a messengerRNA (mRNA)-bearing poly(lactide-co-glycolide acid) (PLGA) coating on surgical suture is being pushed further with this study. Furthermore, the evaluation of the polymer-based transfection reagent Viromer RED has shown that it can be used for the transfection of eukaryotic cells: The mRNA gets properly complexed and translated into a functional protein.In addition, the mRNA-PLGA coating triggered the expression of the keratinocyte growth factor (KGF) in HaCat cells although KGF is not expressed under physiological conditions. Moreover, transfection via surgical sutures coated with mRNA does not affect the cell viability and a proinflammatory reaction in the transfected cells is not induced. These properties make the mRNA-PLGA coating very attractive for the in vivo application. For the future, this could mean that through the use of mRNA-coated sutures in surgical wound closure, cells in the wound area can be transfected directly, thus accelerating and improving wound healing.