Abstract:The current steel-concrete composite floors design might be susceptible to the resonance phenomenon, causing undesirable vibrations in the frequency range that is the most noticeable to humans, i.e., 4 Hz to 8 Hz. This way, the main objective of this work is to investigate the dynamic structural behaviour of a steel-concrete composite multi-storey building when subjected to human rhythmic activities (aerobics). The studied structural model represents a typical interior floor bay of a commercial building used for gym and is composed by three floor levels spanning 20 m by 20 m, with a total area of 3 × 400 m2 . An extensive parametric study was developed aiming to obtain the peak accelerations, RMS (root mean square) accelerations and VDV (vibration dose value) values, based on two different mathematical formulations. The human comfort of the building was analysed and the vibration transmissibility related to the steel columns was verified. Based on the found results, the investigated structural model presented high vibration levels that compromise the human comfort.