Considering the problems of total disturbances, i.e., higher harmonics, model uncertainties and external excitations in a practical vibration control system, a compound vibration suppression method is proposed for an all-clamped plate, which combines sliding mode control (SMC) with reduced-order extended state observer (RESO). First, a state space model of the all-clamped plate with inertial actuator is established. Second, a RESO is designed to estimate the system state variables and total disturbances in real time. In addition, the total disturbances can further be attenuated by RESO through a feedforward compensation part. Third, a sliding mode controller based on the estimation values is designed for a vibration control system. The Lyapunov stability theorem is further applied to prove the stability of the whole closed-loop vibration control system with the proposed controller. Finally, vibration control experiment equipment is built based on the NI-PCIe acquisition card, inertial actuator and acceleration sensor to verify the vibration suppression performances of the proposed method. The experimental results show that the amplitude value of vibration has been reduced by 75.2% with the proposed method, while the amplitude value is reduced by 54.5% with the traditional sliding mode control method based on an extended state observer (SMC-ESO). The comparative experimental results illustrate that the proposed method has excellent anti-disturbance and vibration suppression performances.