2017
DOI: 10.1007/s12206-016-1007-7
|View full text |Cite
|
Sign up to set email alerts
|

Vibration analysis of viscoelastic single-walled carbon nanotubes resting on a viscoelastic foundation

Abstract: Vibration responses are investigated for a viscoelastic single-walled carbon nanotube (visco-SWCNT) resting on a viscoelastic foundation. Based on the nonlocal Euler-Bernoulli beam model, velocity-dependent external damping and Kelvin viscoelastic foundation model, the governing equations are derived. The transfer function method (TFM) is then used to compute the natural frequencies for general boundary conditions and foundations. In particular, the exact analytical expressions of both complex natural frequenc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
4
0
1

Year Published

2017
2017
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 16 publications
(5 citation statements)
references
References 48 publications
0
4
0
1
Order By: Relevance
“…In addition, by assuming orthotropic & isotropic material characterizations, raising the temperature changes caused to enhance the effect of surfaces' degree on FV. Besides, Zhang et al [491] analyzed the FV behavior of the NLC PE Kirchhoff plates founded on the VE foundation and subjected to arbitrary BCs. While the EOM as well as the BCs were defined by using the HP combined with NLET for PE material and solved by modifying a Galerkin strip distributed transfer function methodology.…”
Section: Mixed Solution With Considering the Sdementioning
confidence: 99%
“…In addition, by assuming orthotropic & isotropic material characterizations, raising the temperature changes caused to enhance the effect of surfaces' degree on FV. Besides, Zhang et al [491] analyzed the FV behavior of the NLC PE Kirchhoff plates founded on the VE foundation and subjected to arbitrary BCs. While the EOM as well as the BCs were defined by using the HP combined with NLET for PE material and solved by modifying a Galerkin strip distributed transfer function methodology.…”
Section: Mixed Solution With Considering the Sdementioning
confidence: 99%
“…Установлено, что в результате влияния нелокальных факторов происходит увеличение прогиба при одновременном снижении критической продольной нагрузки и собственных частот. Колебания вязкоупругой ОУНТ на вязкоупругом основании при различных граничных условиях изучены в работе [17] с помощью нелокальной модели балки Эйлера-Бернулли, общей модели Максвелла и модели вязкоупругого основания Кельвина. При этом оценка комплексных собственных частот ОУНТ проводилась с помощью амплитудно-частотной функции с произвольными граничными условиями.…”
Section: Introductionunclassified
“…Karlicic et al [29] studied the transverse vibration of a nonlocal VE-orthotropic multi-nanoplate system embedded in VE medium. Zhang et al [30] presented a vibration analysis of VE single-walled carbon nanotubes resting on VE-Fs. Zamani et al [31] examined the free vibration of thick VE-Ps on visco-Pasternak foundations (V-PFs) using higher-order theory.…”
Section: Introductionmentioning
confidence: 99%