Abstract.It is well known fact that vibrations contribute to excessive wear, fatigue failure and other premature failure of machine components. Thus, various methods have been applied to control these vibrations. One of the commonly used is vibration absorber. The aim of this paper is to explore the potential of epoxy reinforced natural fibers as an alternative material for vibration absorber. Both mechanical properties and dynamic characteristic of the composites are investigated through tensile test and transmissibility test, respectively. Two types of natural fibers were selected for the study; coconut coir and pineapple leaf. The results show that the tensile modulus of composites increases with the increase of fiber content, although the strength was found decreases. This reduction indicates an ineffective stress transfer between the fiber and matrix. From the tensile test result, 20 vol% of pineapple leaf fiber was found to be the optimum fraction, in which afterward was employed for fabrication vibration absorber. Meanwhile, from the transmissibility test, it was noticed that when base excitation increases, the resonance peak and attenuation frequency were changed to the lower value. The fixed-fixed end beam with attached composite vibration absorbers showed that the resonance amplitude of the beam decreased significantly. More absorbers attached on the beam produce better result in attenuating the global structural vibration.