The advancement of new tools in the field of control systems is a contemporary development. This work introduces the utilization of Type-3 fuzzy logic, a relatively recent concept that has been applied across various disciplines. In our case, a Type-3 fuzzy system is designed to enhance the optimization of parameters within the harmony search algorithm, specifically tailored for a control problem. Through a series of experiments, the efficacy of this novel Type-3 fuzzy logic tool is put to the test. Previous studies have primarily explored Type-1 and Type-2 fuzzy logic. To assess the performance of this new Type-3 fuzzy logic tool, a comparative analysis of results is conducted using statistical testing. The introduction of Type-3 fuzzy logic in the control domain represents a novel and innovative approach. This approach extends beyond the conventional Type-1 and Type-2 fuzzy logic, showcasing the dynamic evolution in the field. Results obtained through experimentation are analyzed, and statistical tests are employed to determine whether the Type-3 fuzzy logic tool yields superior outcomes compared to its predecessors. By doing so, this study contributes to the growing body of research that explores the potential benefits of Type-3 fuzzy logic and its application in control systems, offering new perspectives and opportunities for further advancements in the field. We have to mention that the utilization of Type-3 fuzzy logic in enhancing metaheuristics is a relatively new trend, and in this work, this research has extended this to the realm of harmony search. In addition, the application of the optimal design of the ball-and-beam fuzzy controllers has not been previously carried out with the Type-3 fuzzy harmony search algorithm, which is the novelty of this study.