This study presents an efficient vibration-based fault detection method for rotating machines utilising the poly-coherent composite spectrum (pCCS) and machine learning techniques. pCCS combines vibration measurements from multiple bearing locations into a single spectrum, retaining amplitude and phase information while reducing background noise. The use of pCCS significantly reduces the number of extracted parameters in the frequency domain compared to using individual spectra at each measurement location. This reduction in parameters is crucial, especially for large industrial rotating machines, as processing and analysing extensive datasets demand significant computational resources, increasing the time and cost of fault detection. An artificial neural network (ANN)-based machine learning model is then employed for fault detection using these reduced extracted parameters. The methodology is developed and validated on an experimental rotating machine at three different speeds: below the first critical speed, between the first and second critical speeds, and above the second critical speed. This range of speeds represents the diverse dynamic conditions commonly encountered in industrial settings. This study examines both healthy machine conditions and various simulated fault conditions, including misalignment, rotor-to-stator rub, shaft cracks, and bearing faults. By combining the pCCS technique with machine learning, this study enhances the reliability, efficiency, and practical applicability of fault detection in rotating machines under varying dynamic conditions and different machine conditions.