In Richardson's cascade description of turbulence, large vortices break up to form smaller ones, transferring the kinetic energy of the flow from large to small scales. This energy is dissipated at the smallest scales due to viscosity. We study energy cascade in a phenomenological model of vortex breakdown. The model is a binary tree of spring-connected masses, with dampers acting on the lowest level. The masses and stiffnesses between levels change according to a power law. The different levels represent different scales, enabling the definition of "mass wavenumbers." The eigenvalue distribution of the model exhibits a devil's staircase self-similarity. The energy spectrum of the model (defined as the energy distribution among the different mass wavenumbers) is derived in the asymptotic limit. A decimation procedure is applied to replace the model with an equivalent chain oscillator. For a significant range of the stiffness decay parameter, the energy spectrum is qualitatively similar to the Kolmogorov spectrum of 3D homogeneous, isotropic turbulence and we find the stiffness parameter for which the energy spectrum has the well-known − 5/3 scaling exponent.