The purpose of this study was to evaluate the adequacy of coregistration of movement-related cortical potentials (MRCPs) and functional magnetic resonance imaging (fMRI) data in the primary sensorimotor cortex. Data were acquired in four normal subjects during right and left simple index finger movements. In fMRI (single-slice, 1.5 Tesla, T2*-weighted FLASH sequence), contralateral primary motor (M1) and primary sensory cortex (S1) were activated in all subjects. Spatiotemporal dipole modelling of electric MRCP generators (BESA) revealed two main sources in the central region contralateral to the moving finger. Both sources were tangentially oriented. Their configuration was consistent with source locations in the anterior (M1) and posterior (S1) banks of the central sulcus. Accordingly, the M1 source generated the pre-movement, the S1 source largely the immediate post-movement MRCP component. Taken together, MRCP modelling and fMRI data indicated a phasic sequential activation pattern of mostly sulcal portions of contralateral M1 and S1. After coregistration of anatomical MRI, fMRI, and dipole modelling results, the average 3D-distance between fMRI activation areas and MRCP source locations was 18.6 mm (SD 7.6), with the largest deviation in the anterior-posterior direction (12.1+/-9.5 mm). Coregistration inaccuracies of similar magnitude (approximately 17 mm) have been reported previously with MEG and PET or fMRI. We conclude, therefore, that the combination of EEG and fMRI is a promising technique for validation of electrophysiological source models and for evaluation of human functional brain anatomy with both adequate spatial and temporal resolution.