The performance of microwave components is sensitive to vibrations to some extent. Among them, microwave cables and connectors, bandpass filters, mechanical phase shifters and some nonlinear components are the most sensitive. The local oscillator is one of the prime performance-limiting components in microwave systems ranging from simple RF receivers to advanced radars. The increasing present and future demand for low acceleration sensitive oscillators, approaching 10 -13 /g, requires a re-examination of sensitivities of basic nonoscillatory building block components under vibration. The purpose of this paper is to study the phase-modulation (PM) noise performance of an assortment of oscillatory and nonoscillatory microwave components under vibration at 10 GHz. We point out some challenges and provide suggestions for accurate measurement of vibration sensitivity of these components. We also study the effect of vibration on the amplitude-modulation (AM) noise.