A refined simple first-order shear deformation theory is developed to investigate the static bending and free vibration of advanced composite plates such as functionally graded plates. By introducing the new distribution shape function, the transverse shear strain and shear stress have a parabolic distribution across the thickness of the plates, and they equal zero at the surfaces of the plates. Hence, the new refined theory needs no shear correction factor. The Navier solution is applied to investigate the static bending and free vibration of simply supported advanced composite plates. The proposed theory shows an improvement in calculating the deflections and frequencies of advanced composite plates. The formulation and transformation of the present theory are as simple as the simple first-order shear deformation. The comparisons of deflection, axial stresses, transverse shear stresses, and frequencies of the plates obtained by the proposed theory with published results of different theories are carried out to show the efficiency and accuracy of the new theory. In addition, some discussions on the influence of various parameters such as the power-law index, the slenderness ratio, and the aspect ratio are carried out, which are useful for the design and testing of advanced composite structures.