Due to the harsh working environment of wind turbines, various types of faults are prone to occur during long-term operation. Misalignment faults between the gearbox and the generator are one of the latent common faults for doubly-fed wind turbines. Compared with other faults like gears and bearings, the prediction research of misalignment faults for wind turbines is relatively few. How to accurately predict its developing trend has always been a difficulty. In this paper, a combined forecasting model is proposed for misalignment fault prediction of wind turbines based on vibration and current signals. In the modelling, the improved Multivariate Grey Model (IMGM) is used to predict the deterministic trend and the Least Squares Support Vector Machine (LSSVM) optimized by quantum genetic algorithm (QGA) is adopted to predict the stochastic trend of the fault index separately, and another LSSVM optimized by QGA is used as a non-linear combiner. Multiple information of time-domain, frequency-domain and time-frequency domain of the wind turbine's vibration or current signals are extracted as the input vectors of the combined forecasting model and the kurtosis index is regarded as the output. The simulation results show that the proposed combined model has higher prediction accuracy than the single forecasting models.Algorithms 2020, 13, 56 For the complex non-linear system, a single forecasting model is not enough to obtain ideal prediction results. Therefore, in order to predict the mechanical fault accurately, the combined forecasting model has attracted more and more attention from scholars. For example, in Ref.[18], the improved Grey Model (GM (1,1)) and the Back Propagation (BP) neural network optimized by Genetic Algorithm (GA) were used as the single forecasting models. The minimum sum of error squares was used as the combination principle to assign appropriate weight coefficients to them. The combined forecasting model had a smaller prediction error. Ref. [19] proposed a calculation method of combined weight coefficients for the unequal weight of error. The combined forecasting model was constructed by Multivariate Grey Model (MGM (1, n)) and Extreme Learning Machine (ELM) neural network. The combined forecasting model was more suitable for predicting the trend of the bearing fault. In Ref.[20], according to the minimum variance principle, Support Vector Machine (SVM) and grey model were combined to make up the shortcomings of single forecasting models. In Ref. [21], SVM was used as the combiner of forecasting models. The Kalman filter, BP neural network and SVM model were used as single forecasting models. The prediction errors of the single forecasting models were larger than that of the combined model. In Ref. [22], the BP neural network was used to determine the weight coefficients of each single forecasting model. The combined forecasting model using GM (1,1,θ) optimized by Particle Swarm Optimization (PSO) algorithm and SVM optimized by PSO achieved better prediction accuracy for the short-term load of...