Background
Although, in daily living, almost all stair ambulation is conducted posterior to level walking, or vice versa, there are only a few studies related to the transition compared to the studies on steady-state stair walking.
Furthermore, neuromotor control in the instant of the transition is different from that of the steady-state stair walking. However, there are only a few studies investigating the transition from level walking to stair ascent in the elderly by comparing with young adults, and there is no study on the assistance of the transition movement in the elderly who are experiencing neurophysiological changes.
Thus, this pilot study aimed to compare the flat surface-to-stair ascent transition by the elderly to that seen in young adults, and to investigate how vibrotactile somatosensory stimulus (VSS), which has a positive effect on muscle performance and gait, affects the transition tasks in elderly people.
Results
In the first half of the stance phase, the elderly exhibited a higher moment and power of the hip extensor and a less moment and power of the knee extensor compared with young adults. In the second half of the stance phase, positive plantar-flexor power and support moment was higher in the elderly. In addition, during the single-limb support phase, dorsiflexion was maintained in the elderly, whereas young adults appeared to have decreased dorsiflexion.
When the VSS was applied, the moment and power of the hip extensor, the plantar-flexor moment, and the support moment in the entire of the stance phase were increased. In addition, it was found that the degree of the kinetics parameters was different depending on the frequencies of the VSS.
Conclusions
This pilot study has revealed evident biomechanical differences between elderly people and young adults during the transition from level walking to stair ascent. Additionally, it has shown that the VSS may accentuate the features of the transition movement of the elderly and regulate joint kinetics. The results of the present pilot study can provide a base for further research and understanding of movement, which can be utilized in designing assistance aids for the elderly.
Trial registration
CRIS, KCT0005434, Registered 25 September 2020, Retrospectively registered.