Deep
eutectic solvents (DES) are emerging sustainable designer
solvents viewed as greener and better alternatives to ionic liquids.
Nonionic DESs possess unique properties such as viscosity and hydrophobicity
that make them desirable in microextraction applications such as oil-spill
remediation. This work builds upon a nonionic DES, NMA–LA DES,
previously designed by our group. The NMA–LA DES presents a
rich nanoscopic morphology that could be used to allocate solutes
of different polarities. In this work, the possibility of solvating
different solutes within the nanoscopically heterogeneous molecular
structure of the NMA–LA DES is investigated using ionic and
molecular solutes. In particular, the localized vibrational transitions
in these solutes are used as reporters of the DES molecular structure
via vibrational spectroscopy. The FTIR and 2DIR data suggest that
the ionic solute is confined in a polar and continuous domain formed
by NMA, clearly sensing the direct effect of the change in NMA concentration.
In the case of the molecular nonionic and polar solute, the data indicates
that the solute resides in the interface between the polar and nonpolar
domains. Finally, the results for the nonpolar and nonionic solute
(W(CO)6) are unexpected and less conclusive. Contrary to
its polarity, the data suggest that the W(CO)6 resides
within the NMA polar domain of the DES, probably by inducing a domain
restructuring in the solvent. However, the data are not conclusive
enough to discard the possibility that the restructuring comprises
not only the polar domain but also the interface. Overall, our results
demonstrate that the NMA–LA DES has nanoscopic domains with
affinity to particular molecular properties, such as polarity. Thus,
the presented results have a direct implication to separation science.