In a previous paper (J. Chem. Phys. 131, 044511 (2009)), it has been shown that on ultrashort length and time scales, the speed of vibrational energy transport along a molecular chain is limited by intrasite vibrational relaxation rather than the actual inter site propagation. However, since intrasite vibrational relaxation is length independent, the inter site propagation rate is expected to become ratelimiting at some length scale, where propagation approaches the bulk limit. In the present paper, we investigate the transition between both regimes. The response of different types of modes may be very different at early times, depending on how much they contribute directly to energy transport. Surprisingly though, when averaging the energy content over all vibrational modes of the various chain sites, the complexity of the intrasite vibrational relaxation process is completely hidden so that energy transport on the nanoscale can be described by an effective propagation rate, that equals the bulk value, even at short times.
Transition from IVR limited vibrational energy transport to bulk heat transport
Marco Schade and Peter HammPhysikalisch-Chemisches Institut, Universität Zürich, Winterthurerstr. 190, Switzerland Abstract: In a previous paper (J. Chem. Phys. 131, 044511 (2009)), it has been shown that on ultrashort length and time scales, the speed of vibrational energy transport along a molecular chain is limited by intrasite vibrational relaxation rather than the actual inter site propagation. However, since intrasite vibrational relaxation is length independent, the inter site propagation rate is expected to become rate-limiting at some length scale, where propagation approaches the bulk limit. In the present paper, we investigate the transition between both regimes. The response of different types of modes may be very different at early times, depending on how much they contribute directly to energy transport. Surprisingly though, when averaging the energy content over all vibrational modes of the various chain sites, the complexity of the intrasite vibrational relaxation process is completely hidden so that energy transport on the nanoscale can be described by an effective propagation rate, that equals the bulk value, even at short times.