Coinage metal nanostructures support localised surface plasmons, which confine optical fields much tighter than their wavelength (1). This extreme enhancement enables vibrational spectroscopy within small volumes, even down to single molecules (2,3). For many years lateral resolution was believed to be 10 nm (4), however recent experiments resolve the atomic structure of single molecules using tipenhanced Raman spectroscopy (3) and directly sequence RNA strands (5). Atomistic simulations also suggest plasmonic confinement to atomic scales is possible (6). Here we show that light-activated mobilisation of surface atoms in a plasmonic hotspot triggers the formation of additional 'picocavities'bounded by a single gold atom. Their ultra-small light localisation alters which vibrational modes of trapped molecules are observed, due to strong optical field gradients that switch the Raman selection rules. The resulting cascaded ultra-strong plasmonic confinement pumps specific molecular bonds, thereby creating non-thermal vibrational populations, and forms a new type of optomechanical