Vibrational Spectroscopic and Computational Analysis of 5-chloro-2-hydroxy Acetophenone
Abstract:Fourier Transfer infrared and Raman spectra in the range of 4000-400 cm-1 and 3500-50 cm-1 were recorded to study the vibrational spectra of 5-chloro-2-hydroxyacetophenone (CHAP). Using density functional theory (DFT/B3LYP) with 6-31+G(d,p) and 6-311++G(d,p) basis sets the various geometrical parameters such as Raman activities, infrared intensities and optimum frequencies were calculated. The HOMO-LUMO energy gap has been computed which confirms the charge transfer of the molecular system. Mulliken’s atomic c… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.