The collisional quenching of selected vibrational levels of electronically excited Sic1 B'ZA radicals by the series of nonpolar molecules He, Ar, H2, N2, C02, CH4, and CF4 was investigated experimentally. The results for He and Ar agreed well with previous independent measurements. Rate constants (and cross sections) for total removal of Sic1 B12A v' = 0 and 1 are relatively large for all collision partners and quite well correlated with the attractive nature of the intermolecular interaction. Rate constants and cross sections were measured for transfer to the near-degenerate B2Z+ electronic state. A substantial, but variable, fraction of the total removal proceeds via this channel for all quenchers. Nascent vibrational distributions over the V I = 0, 1, and 2 vibrational levels of the B2Z+ state were determined by exploiting the relatively much shorter radiative lifetime of this electronic state. N o obvious, single molecular property could be identified to explain these vibrational distributions.There is, however, a trend toward removal of more energy by polyatomic molecules. The cross sections for the single, near-resonant state-to-state process B12A v' = 0 to BZZ+ u' = 2 were found to be well-correlated with attractive intermolecular forces. Selected higher resolution measurements confirmed the lack of any significant vibrational relaxation within the B'2A state competitive with collisional transfer to the B2Z+ state and revealed no evidence for preferred interstate transfer through specific -gatewayn rotational levels.