Mood and anxiety disorders typically begin in adolescence and have overlapping clinical features but marked inter-individual variation in clinical presentation. The use of multimodal neuroimaging data may offer novel insights into the underlying brain mechanisms. We applied Heterogeneity Through Discriminative Analysis (HYDRA) to measures of regional brain morphometry, neurite density, and intracortical myelination to identify subtypes of youth, aged 9–10 years, with mood and anxiety disorders (N = 1931) compared to typically developing youth (N = 2823). We identified three subtypes that were robust to permutation testing and sample composition. Subtype 1 evidenced a pattern of imbalanced cortical-subcortical maturation compared to the typically developing group, with subcortical regions lagging behind prefrontal cortical thinning and myelination and greater cortical surface expansion globally. Subtype 2 displayed a pattern of delayed cortical maturation indicated by higher cortical thickness and lower cortical surface area expansion and myelination compared to the typically developing group. Subtype 3 showed evidence of atypical brain maturation involving globally lower cortical thickness and surface coupled with higher myelination and neural density. Subtype 1 had superior cognitive function in contrast to the other two subtypes that underperformed compared to the typically developing group. Higher levels of parental psychopathology, family conflict, and social adversity were common to all subtypes, with subtype 3 having the highest burden of adverse exposures. These analyses comprehensively characterize pre-adolescent mood and anxiety disorders, the biopsychosocial context in which they arise, and lay the foundation for the examination of the longitudinal evolution of the subtypes identified as the study sample transitions through adolescence.