In this paper, a novel approach for action detection from RGB sequences is proposed. This concept takes advantage of the recent development of CNNs to estimate 3D human poses from a monocular camera. To show the validity of our method, we propose a 3D skeletonbased two-stage action detection approach. For localizing actions in unsegmented sequences, Relative Joint Position (RJP) and Histogram Of Displacements (HOD) are used as inputs to a k-nearest neighbor binary classifier in order to define action segments. Afterwards, to recognize the localized action proposals, a compact Long Short-Term Memory (LSTM) network with a de-noising expansion unit is employed. Compared to previous RGB-based methods, our approach offers robustness to radial motion, view-invariance and low computational complexity. Results on the Online Action Detection dataset show that our method outperforms earlier RGB-based approaches.