APOBEC3G (APO3G) is a cellular cytidine deaminase with potent antiviral activity. Initial studies of the function of APO3G demonstrated extensive mutation of the viral genome, suggesting a model in which APO3G's antiviral activity is due to hypermutation of the viral genome. Recent studies, however, found that deaminase-defective APO3G mutants transiently expressed in virus-producing cells exhibited significant antiviral activity, suggesting that the antiviral activity of APO3G could be dissociated from its deaminase activity. To directly compare the antiviral activities of wild-type (wt) and deaminase-defective APO3G, we used two approaches: (i) we titrated wt and deaminase-defective APO3G in transient-transfection studies to achieve similar levels of virus-associated APO3G and (ii) we constructed stable cell lines and selected clones expressing comparable amounts of wt and deaminase-defective APO3G. Viruses produced under these conditions were tested for viral infectivity. The results from the two approaches were consistent and suggested that the antiviral activity of deaminase-defective APO3G was significantly lower than that of wt APO3G. We conclude that efficient inhibition of vif-defective human immunodeficiency virus type 1 requires catalytically active APO3G.The human immunodeficiency virus type 1 (HIV-1) accessory protein Vif plays an important role in regulating virus infectivity (8,38). It is now well established that HIV-1 Vif can counteract the human cytidine deaminase APOBEC3G (APO3G). The inhibition of APO3G's antiviral effects has been attributed to a reduction in cellular expression of APO3G protein, which is due to Vif-mediated degradation of APO3G by cytoplasmic proteasomes (6,20,25,27,34,37,43). On the other hand, we recently found that Vif could prevent encapsidation of a degradation-resistant APO3G variant, suggesting that Vif can inhibit the APO3G antiviral activity through multiple independent mechanisms (29). In the absence of Vif, APO3G is efficiently packaged into HIV virions and inhibits virus replication. A number of studies reported that the presence of APO3G in the virus can result in hypermutation of the viral minus-strand cDNA during reverse transcription (11,18,23,24,42,45), inhibition of reverse transcription (9), tRNA annealing or tRNA processing (10, 26), DNA strand transfer (19, 26), or integration (22, 26).Some of these effects do not require catalytically active APO3G (19,22), and several reports suggested that deaminase-defective APO3G and APO3F have antiviral activity when transiently coexpressed with HIV-1 in 293T cells (3,12,28,35). Our own data concerning the antiviral properties of the deaminase-defective APO3G C288S/C291A mutant supported these conclusions (30). However, in our previous study we found that comparable inhibition of viral infectivity required higher levels of deaminase-defective APO3G protein than that of wild type (wt) (30). The purpose of the current study was to characterize in more detail the antiviral properties of deaminase-defective APO3G. We p...