In this study, we explore the corrected thermodynamics of non-linear magnetic charged anti-de Sitter (AdS) black holes surrounded by quintessence, incorporating thermal fluctuations and deriving the corrected thermodynamic potentials. We analyze the effects of corrections due to thermal fluctuations on various thermodynamic potentials, including enthalpy, Helmholtz free energy, and Gibbs free energy. Our results show significant impacts on smaller black holes, with first-order corrections destabilizing them, while second-order corrections enhance stability with increasing parameter values. The specific heat analysis further elucidates the stability criteria, indicating that the large black holes ensure stability against phase transitions. However, the thermal fluctuations do not affect the physical limitation points as well as the second-order phase transition points of the black hole. Our findings highlight the intricate role of thermal fluctuations in black hole thermodynamics and their influence on stability, providing deeper insights into the behaviour of black holes under corrected thermodynamic conditions.