Blooms of the coccolithophorid Emiliania huxleyi can be infected by viruses, which can lead to bloom-termination. This pilot study used an expressed sequence tag (EST) approach to get a first view of gene-expression changes that occur during viral infection of E. huxleyi. cDNA libraries were constructed from uninfected cultures and 6, 12, and 24 h after infection with E. huxleyi-specific virus 86 (EhV-86). From each library 60-90 ESTs were randomly selected and annotated manually with PhyloGena. Viral genes were identified using BLAST-Search of the known viral genome. The data of this study show, that 6 h after viral infection the algal transcriptome changed significantly although few viral transcripts were present. At this point, changes mainly concerned transcripts related to photosynthesis and protein metabolism. However, after 24 h viral transcripts were most abundant. Viral transcripts found at this stage of viral infection encode proteins involved in protein degradation, nucleic acid degradation, transcription and replication.