“…As a result of these studies, considerable insight has been gained regarding (1) the EhV intein [18] and the expression profile of EhV genes during infection [19,20,21]; (2) the EhV life cycle, including its utilization of lipid rafts for budding from the host cells [22,23]; (3) host cellular processes in response to infection such as autophagy and the induction of programmed cell death (PCD) pathways [17,24,25,26,27]; (4) the manipulation of fatty acid and lipid metabolism within infected cells, leading to the production of virus-induced lipids crucial for the progression of the infection [10,28,29,30,31]; (5) vector transmission of EhVs in the natural environment via aerosols and zooplankton faecal pellets [32,33]; and (6) the co-occurring diversity of EhVs and their viruses in a range of habitats, including the Atlantic Ocean, Norwegian Fjords and coastal regions of the Black Sea [8,34,35,36,37,38]. Perhaps the most astonishing finding to date was the identification of a de novo sphingolipid biosynthesis pathway in the EhV genome [1,9,39], encoding virus-derived glycosphingolipids (vGSLs) that are crucial regulators of infection [28].…”