The transmembrane glycoprotein (gp41) of human immunodeficiency virus type 1 (HIV-1) has been implicated in the cytopathology observed during HIV infection. The first amino acids located at the amino terminus are involved in membrane fusion and syncytium formation, while sequences located at the carboxy terminus have been predicted to interact with membranes and modify membrane permeability. The HIV-1 gp41 gene has been cloned and expressed in Escherichia coli cells by using pET vectors to analyze changes in membrane permeability produced by this protein. This system is well suited for expressing toxic genes in an inducible manner and for analyzing the function of proteins that modify membrane permeability. gp41 enhances the permeability of the bacterial membrane to hygromycin B despite the low level of expression of this protein. To localize the regions of gp41 responsible for these effects, a number of fragments spanning different portions of gp41 were inducibly expressed in E. coli. Two regions of gp41 were shown to increase membrane permeability: one located at the carboxy terminus, where two highly amphipathic helices have been predicted, and another one corresponding to the membrane-spanning domain. Expression of the central region of gp41 comprising this domain was highly lytic for E. coli cells and increased membrane permeability to a number of compounds. These findings are discussed in the light of HIV-induced cytopathology and gp41 structure.