2009
DOI: 10.1142/s0218216509007166
|View full text |Cite
|
Sign up to set email alerts
|

Virtual Crossing Number and the Arrow Polynomial

Abstract: We introduce a new polynomial invariant of virtual knots and links and use this invariant to compute a lower bound on the virtual crossing number and the minimal surface genus.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
114
0
1

Year Published

2009
2009
2024
2024

Publication Types

Select...
5
4

Relationship

1
8

Authors

Journals

citations
Cited by 99 publications
(115 citation statements)
references
References 14 publications
0
114
0
1
Order By: Relevance
“…This refinement generalizes the usual Kauffman bracket in the case of classical knots. There are many refinements of the Kauffman bracket for the case of virtual knots (see, e.g., [25,51,52,165,177] and references therein).…”
Section: An Analog Of the Kauffman Bracketmentioning
confidence: 99%
“…This refinement generalizes the usual Kauffman bracket in the case of classical knots. There are many refinements of the Kauffman bracket for the case of virtual knots (see, e.g., [25,51,52,165,177] and references therein).…”
Section: An Analog Of the Kauffman Bracketmentioning
confidence: 99%
“…Скобка Кауфмана В настоящем параграфе мы построим аналог скобки Кауфмана ⟨ · ⟩ для тео-рий узлов с четностью, который обобщает обычную скобку Кауфмана в случае классических узлов. Имеется много усилений скобки Кауфмана на случай вир-туальных узлов; см., например, статьи [8], [25]- [27] и ссылки в них.…”
Section: рис 18 минимальная гауссова диаграммаunclassified
“…We also refer to A[K] as the arrow polynomial [4]. The arrow polynomial has infinitely many variables and integer coefficients.…”
Section: Section 9 Constructs a Simple Extended Bracket Invariant Denmentioning
confidence: 99%