Owing to the good mechanical properties of braided structures, regular braided ropes are increasingly being used in various fields, including marine exploration, aloft work, recreation activities, and oil prospecting. However, under certain severe conditions, they could break, a situation that is absolutely undesired. Thus, predicting their stress distribution and strain-force characteristics when they are subjected to different tensile loads is a pre-requisite for their application. Therefore, in this study, a mathematical model for ropes with regular braided structures is developed, and based on the model, this study reveals that uneven stress distributions in the different strands of regular braided ropes generate different stress distributions and strain-force characteristics in each of the strands. Additionally, the uneven stress distributions in the different strands also induce mechanical failure more readily. Finally, to ensure the reliability of braided ropes in different applications, different strand parameters are compared.