“…0,K , where c * , c * , c * , c * , ĉ * , ĉ * are constants independent of h K . With the help of the stability of the projection operators and stabilizations terms, we obtain the following lemma ( for details, see[6,9,12] and references within).Lemma 1. For all u s h , v s h ∈ V h , p f h , q f h ∈ Q h , w h , s h ∈ W h , we have, for i = 1, 2, a h 1 (u s h , v s h ) ≤ 2µα * ∥ε(u s h )∥ 0,Ω ∥ε(v s h )∥ 0,Ω , ãh 2 (p f h , q f h ) ≤ α * c 0 + α 2 λ p f h 0,Ω q f h 0,Ω , a h 2 (p f h , q f h ) ≤ α * κ 2 η −1 ∇p f h 0,Ω ∇q f h 0,Ω , a h 3+i (w h , s h ) ≤ α * D b i ∥∇w h ∥ 0,Ω ∥∇s h ∥ 0,Ω , F h b,r (w 1,h , w 2,h ; v s h ) ≲ (ρ ∥b∥ 0,Ω ∥v s h ∥ 0,Ω + τ C k,2 ∥r h ∥ 0,Ω ∥ε(v s h )∥ 0,Ω ), m h (w h , s h ) ≤ ∥w h ∥ 0,Ω ∥s h ∥ 0,Ω , G h ℓ (q f h ) ≤ ∥ℓ∥ 0,Ω q f h 0,Ω , c h (v s h ; w h , s h ) ≲ |v s h | 1,Ω ∥w h ∥ 1,Ω ∥s h ∥ 1,Ω , J h z (w 1,h , w 2,h , u s h ; s h ) ≤ ∥z h ∥ 0,Ω ∥s h ∥ 0,Ω .…”