2019
DOI: 10.1002/int.22129
|View full text |Cite
|
Sign up to set email alerts
|

Virtual learning environment to predict withdrawal by leveraging deep learning

Abstract: The current evolution in multidisciplinary learning analytics research poses significant challenges for the exploitation of behavior analysis by fusing data streams toward advanced decision-making. The identification of students that are at risk of withdrawals in higher education is connected to numerous educational policies, to enhance their competencies and skills through timely interventions by academia. Predicting student performance is a vital decision-making problem including data from various environmen… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
32
0
3

Year Published

2020
2020
2022
2022

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 59 publications
(44 citation statements)
references
References 37 publications
0
32
0
3
Order By: Relevance
“…Several studies deploy machine learning techniques to analyse student behavior and predict students at-risk of a failure (Costa et al, 2017;Hassan et al, 2019;Wasif et al, 2019). In the existing literature, another array of studies follow a sequential approach to convert the course duration into a week-wise format and assess student performance according to their interaction with the learning environment.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Several studies deploy machine learning techniques to analyse student behavior and predict students at-risk of a failure (Costa et al, 2017;Hassan et al, 2019;Wasif et al, 2019). In the existing literature, another array of studies follow a sequential approach to convert the course duration into a week-wise format and assess student performance according to their interaction with the learning environment.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Referensi [6] juga mengangkat permasalahan tentang drop out atau tidak, berdasarkan relasi durasi pemberian tugas dan aktivitas mingguan mahasiswa. Demikian juga dengan beberapa referensi yang lainnya, yang mengangkat permasalahan yang sama, yaitu mahasiswa akan undur diri (withdrawn) atau tidak, baik pada satu modul tertentu atau keseluruhan modul [7]- [10].…”
Section: A Permasalahan Yang Diangkat Pada Oulad (P1)unclassified
“…Selain itu, fitur interaksi juga dapat disajikan dalam bentuk sekuensial, seperti halnya deret waktu, sehingga prediksi kinerja atau kecenderungan mahasiswa melakukan drop out dapat dilakukan secara harian atau mingguan. Fitur sekuensial yang digunakan dalam beberapa literatur sangat bervariasi, yaitu jumlah klik harian dari semua sumber daya VLE [14], jumlah klik pada satu sumber daya VLE tertentu (Forum atau OUcontent atau resource VLE) [8], dan ringkasan dari semua sumber daya VLE (setiap sumber daya VLE memiliki atribut tersendiri) dalam mingguan [7]. Di samping itu, untuk meningkatkan kinerja, fitur sekuensial dengan fitur tabel demografis bisa digabungkan [14].…”
Section: B Fitur Yang Digunakan Pada Oulad (P2)unclassified
See 1 more Smart Citation
“…For the last two decades, different ML/DL algorithms have been developed, evaluated and their performance explored in online and M-learning settings [5], [6]. It is crucial to decide which type of ML/DL algorithm to choose for modeling the learning behavior of M-learners as proper learning algorithm increases/decreases the response time of the Mlearning system [7], [8]. The right algorithm also affects the overall performance of the M-learning system.…”
Section: Introductionmentioning
confidence: 99%