The authentication of milk and dairy products has great significance for food fraud. The present investigation entailed the development of a novel method that amalgamates the double-tube approach with multiplex real-time polymerase chain reaction (PCR) technology, incorporating TaqMan probes, to facilitate the high-throughput screening and detection of animal-derived constituents within milk and dairy products. Eight dairy-derived animal-specific primers and probes were designed for the mitochondrial cytochrome b (Cytb) gene of eight dairy products, including cow, buffalo, yak, goat, sheep, horse, donkey, and camel. Through the developed double-tube detection assays, the above eight targets could be simultaneously identified with a detection limit of 0.00128–0.0064 ng/μL. The multiplex qPCR assay was effectively validated using simulated adulterated samples with different mixing ratios and demonstrated a detection limit of 0.1%. Upon analysis of 54 commercially available dairy products, a mislabeling rate of 33% was revealed. This method affords an efficacious means of detecting dairy product ingredients, thereby offering robust technical backing for market oversight and regulatory enforcement of milk and dairy products.