2011
DOI: 10.1016/j.compag.2010.12.013
|View full text |Cite
|
Sign up to set email alerts
|

Virtual vineyard for grapevine management purposes: A RFID/GPS application

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
9
0

Year Published

2012
2012
2022
2022

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 14 publications
(9 citation statements)
references
References 11 publications
0
9
0
Order By: Relevance
“…Visualisations in viticulture enable a better vineyard monitoring, reducing costs and at the same time, generating a more transparent representation of the existent variability in the vineyard, which is valuable for the optimisation • AgroDSS [31] • AquaGIS [32] • • ATLAS [33] • • Blauth et al [34] • Byishimo et al [35] • CAMDT [36] • CropGIS [37] • • CropSAT [38] • • DIDAS [39] • DyNoFlo [40] • • Galindo et al [41] • GeoVisage [42] • Geovit [43] • GramyaVikas [44] • HydroQual [45] • Li et al [46] • LMTool [47] • • Luvisi et al [48] • mDSS [49] • SmartScape [50] • • VBoxReporting [51] Vite.net [52] • • • visualizeR [8] • ViPER [53] • Ochola et al [54] • Falcao et al [55] • LandCaRe DSS [56] • ValorE [57] • Agroland [58] • Gandhi et al [59] • • CaNaSTA [60] • eFarmer [61] • FARMERS [62] • PlanteInfo [63] • CropScape [64] • SIMAGRI [65] • FDSSFIS [66] • MOTIFS [67] • CarrotAge [68] • AgriSensor [69] • • • CognitiveInputs [70] • • Ruß et al [71] Tan et al…”
Section: Viticulturementioning
confidence: 99%
“…Visualisations in viticulture enable a better vineyard monitoring, reducing costs and at the same time, generating a more transparent representation of the existent variability in the vineyard, which is valuable for the optimisation • AgroDSS [31] • AquaGIS [32] • • ATLAS [33] • • Blauth et al [34] • Byishimo et al [35] • CAMDT [36] • CropGIS [37] • • CropSAT [38] • • DIDAS [39] • DyNoFlo [40] • • Galindo et al [41] • GeoVisage [42] • Geovit [43] • GramyaVikas [44] • HydroQual [45] • Li et al [46] • LMTool [47] • • Luvisi et al [48] • mDSS [49] • SmartScape [50] • • VBoxReporting [51] Vite.net [52] • • • visualizeR [8] • ViPER [53] • Ochola et al [54] • Falcao et al [55] • LandCaRe DSS [56] • ValorE [57] • Agroland [58] • Gandhi et al [59] • • CaNaSTA [60] • eFarmer [61] • FARMERS [62] • PlanteInfo [63] • CropScape [64] • SIMAGRI [65] • FDSSFIS [66] • MOTIFS [67] • CarrotAge [68] • AgriSensor [69] • • • CognitiveInputs [70] • • Ruß et al [71] Tan et al…”
Section: Viticulturementioning
confidence: 99%
“…Implementation of digital farming practices result in a sustainable, efficient, and stable production with a significant increase in yield. Some of the technologies involved in digital farming include the Internet of Thing [180] , big data analysis [181] , smart sensors [182] , GPS and GIS, ICT [183] , wireless sensor networks [184,185] , UAV [186][187][188] , cloud computing [189][190][191] , simulation software [192][193][194][195] , mapping applications [196,197] , virtual farms [198][199][200] , mobile devices [201][202][203][204] , and robotics. A conceptual illustrating of digital farming and its relationship with agricultural robotics is provided in Figure 6, showing that the collected data by the robot agents are sent to a cloud advisory center for decision makings.…”
Section: Agricultural Robotics and Digital Farmingmentioning
confidence: 99%
“…In addition to remote and proxy data collected from distinct sensors, the use of mobile devices with multitag technologies (Cunha et al, 2010;Luvisi et al, 2011) facilitates the recording of a great wealth of data. These numerous spatial data have stimulated new developments in both software and hardware, jointly with statistical processing which stems from geostatistics, image pattern recognition and satellite image processing and which includes machine learning.…”
Section: The Issue Of Big-data Handling and The Statistical Processinmentioning
confidence: 99%